
Illustration of Bayesian P-splines

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●●

●

●
●

●

●

●

0.0

0.4

0.8

0.00 0.25 0.50 0.75 1.00

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Smoothing of simulated data with Bayesian P-splines (20 cubic segments, second order penalty) for
different combination of smoothness and noise level. The number of Markov steps was 1000. Blue curves:
expect values; red curves: plus and minus two standard deviations. R code in f-bayes-show.R

Illustration of Bayesian P-splines

A graph in the book ’Practical Smoothing. The Joys of P-splines’

Paul Eilers and Brian Marx, 2019

library(ggplot2)

library(gridExtra)

library(JOPS)

Simulation parameters

m = 40

set.seed(23)

x = seq(0, 1, length = m)

frq = c(0.5, 0.5, 2.5, 2.5)

nse = c(0.3, 0.1, 0.3, 0.1)

Bspline parameters

nseg = 50

B = bbase(x, 0, 1, nseg, 3)

n = ncol(B)

Roughness penalty

E = diag(n)

d = 2

D = diff(E, diff = d)

P = t(D) %*% D

ndraw = 1000

V0 = V1 = matrix(0, ndraw, 4)

plts = list()

for (sim in 1:4) {

t0 = Sys.time()

Simulate data

y = sin(2 * pi * frq[sim] * x) + rnorm(m) * nse[sim]

Initialize

sig2 = 0.1

tau2 = 1

BB = t(B) %*% B

By = t(B) %*% y

yy = t(y) %*% y

A = matrix(0, n, ndraw)

Run Markov chain

for (it in 1:ndraw) {

Update coefficients

U = BB/sig2 + P/tau2

Ch = chol(U)

a0 = solve(Ch, solve(t(Ch), By))/sig2

a = solve(Ch, rnorm(n)) + a0

A[, it] = a

Update and save error variance

r2 = yy - 2 * t(a) %*% By + t(a) %*% BB %*% a

sig2 = c(r2/rchisq(1, m))

V0[it, sim] = sig2

Update and save roughness variance

r = D %*% a

tau2 = c(sum(rˆ2)/rchisq(1, n - d))

V1[it, sim] = tau2

}

Compute curve on grid

am = apply(A[, -(1:100)], 1, mean)

xg = seq(0, 1, length = 200)

Bg = bbase(xg, 0, 1, nseg, 3)

mu = Bg %*% am

Variation in curves

Mu = Bg %*% A

s = apply(Mu, 1, sd)

t1 = Sys.time() - t0

cat(t1, "\n")

Plot data and curve

Data = data.frame(x = x, y = y)

Dfit = data.frame(x = xg, mu = mu, lo = mu - 2 * s, hi = mu + 2 * s)

plt1 = ggplot(Data, aes(x = x, y = y)) +

geom_point(aes(x = x, y = y), size = 1.5, color = grey(0.20)) +

geom_line(data = Dfit, aes(x = x, y = mu), size = 1, color = ’blue’) +

geom_line(data = Dfit, aes(x = x, y = lo), size = 1, color = ’red’, linetype = 2) +

geom_line(data = Dfit, aes(x = x, y = hi), size = 1, color = ’red’, linetype = 2) +

geom_line(data = Dfit, aes(x = x, y = lo), size = 0.5, color = ’red’) +

geom_line(data = Dfit, aes(x = x, y = hi), size = 0.5, color = ’red’) +

geom_point(aes(x = x, y = y), size = 1.5, color = grey(0.20)) +

xlab(’’) + ylab(’’) +

JOPS_theme()

plts[[sim]] = plt1

}

Make and save plots

grid.arrange(grobs = plts, ncol = 2, nrow = 2)

