
Illustration B-splines differing number of segments (simulated data)

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00

Small basis

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00

Large basis

Two cubic B-spline fits to the same simulated data, with a small basis (left) and with a larger one
(right). R code in f-bsize.R

Illustration of B-spline fits with varying basis size

A graph in the book "Practical Smoothing. The Joys of P-splines"

Paul Eilers and Brian Marx, 2019

library(ggplot2)

library(gridExtra)

library(colorspace)

library(JOPS)

Simulate data

n = 150

set.seed(2016)

x = runif(n)

y = 0.3 + sin(1.2 * x + 0.3) + rnorm(n) * 0.1

Data = data.frame(x, y, id = as.factor(5))

Make a matrix containing the small B-spline basis

ndx = 5

deg = 3

B = bbase(x, 0, 1, nseg = ndx, bdeg = deg)

nb1 = ncol(B)

A basis for plotting the fit on the grid xg

ng = 500

xg = seq(0, 1, length = ng)

Bg = bbase(xg, 0, 1, nseg = ndx, bdeg = deg)

Estimate the coefficients and compute the fit on the grid

a = solve(t(B) %*% B, t(B) %*% y)

z = Bg %*% a

Make a matrix with B-splines scaled by coefficients

Bsc1 = Bg %*% diag(c(a))

Create data frames for ggplot

Zf1 = data.frame(x = xg, y = z, id = as.factor(1))

Bf1 = data.frame(x = rep(xg, nb1), y = as.vector(Bsc1),

id = as.factor(rep(1:nb1, each = ng)))

Bf1$y[abs(Bf1$y) < 0.0001] = NA

Bf1 = na.omit(Bf1)

Build the graphs

plt1 = ggplot(Bf1, aes(x = x, y = y, group = id, colour = id)) +

geom_line(size = 0.7) +

ggtitle("Small basis") +

geom_hline(yintercept = 0, size = 0.3) +

geom_line(data = Zf1, size = 1, colour = "blue") +

geom_point(data = Data, color = "grey60", size = 0.8) +

xlab("") + ylab("") +

JOPS_theme() +

theme(legend.position = "none") +

scale_color_manual(values = rainbow_hcl(nb1 + 1, start = 10, end = 350))

Make a matrix containing the large B-spline basis

ndx = 15

deg = 3

B = bbase(x, 0, 1, nseg = ndx, bdeg = deg)

nb = ncol(B)

A basis for plotting the fit on the grid xg

ng = 500

xg = seq(0, 1, length = ng)

Bg = bbase(xg, 0, 1, nseg = ndx, bdeg = deg)

Estimate the coefficients and compute the fit on the grid

a = solve(t(B) %*% B, t(B) %*% y)

z = Bg %*% a

Make a natrix with B-splines scaled by coefficients

Bsc = Bg %*% diag(c(a))

Create data frames for ggplot

Zf = data.frame(x = xg, y = z, id = as.factor(1))

Bf = data.frame(x = rep(xg, nb), y = as.vector(Bsc),

id = as.factor(rep(1:nb, each = ng)))

Bf$y[abs(Bf$y) < 0.0001] = NA

Bf = na.omit(Bf)

Build the graphs

plt2 = ggplot(Bf, aes(x = x, y = y, group = id, colour = id)) +

geom_line(size = 0.7) +

ggtitle("Large basis") +

geom_hline(yintercept = 0, size = 0.3) +

geom_line(data = Zf, size = 1, color = ’blue’) +

geom_point(data = Data, color = "grey60", size = 0.8) +

xlab("") + ylab("") +

JOPS_theme() +

theme(legend.position = "none") +

scale_color_manual(values=rainbow_hcl (nb, start = 10, end = 350))

Show the graphs on the screen and save them

grid.arrange(plt1, plt2, ncol = 2, nrow = 1)

