
Second order difference penalty in action with various tuning

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ● ● ● ● ●
●

●

●

●

●
●

●

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00

λ = 0.1 | s = 0.07 | r = 0.1

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ●
●

●

●
● ● ● ●

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00

λ = 5 | s = 0.08 | r = 0.02

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ●
●

●
●

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00

λ = 500 | s = 0.11 | r = 0.01

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ●

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00

λ = 10000 | s = 0.21 | r = 0

The second order penalty in action for various values of λ. Also shown are the standard deviations
of the residuals (s) and the roughness measure (r). Cubic B-splines, 20 segments. R code in f-d2pen.R

First order difference penalty in action with various tuning

A graph in the book ’Practical Smoothing. The Joys of P-splines’

Paul Eilers and Brian Marx, 2019

library(ggplot2)

library(gridExtra)

library(JOPS)

Simulate data

m = 50

set.seed(123)

x = runif(m)

y = sin(2.5 * x) + rnorm(m) * 0.1 + 0.2

Make basis and penalty

nu = 200

u = seq(0, 1, length = nu)

nseg = 20

Bu = bbase(u, nseg = nseg)

B = bbase(x, nseg = nseg)

nb = ncol(B)

knots = ((1:nb) - 2) / nseg

n = ncol(B)

D = diff(diag(n), diff = 2)

P = t(D) %*% D

BtB = t(B) %*% B

Bty = t(B) %*% y

Compute coefficients

A = Mu = NULL

lambdas = c(0.1, 5, 500, 10000)

for (lambda in lambdas) {

a = solve(BtB + lambda * P, Bty)

A = cbind(A, a)

}

Z = Bu %*% A

Mu = cbind(Mu, B %*% A)

Generate the plots

plts = list()

for (j in 1:4) {

Compute roughness

aj = c(A[, j])

da = D %*% aj

r = sqrt(sum(da ˆ 2) / (n - 2))

r = round(r, 2)

s = sqrt(mean((y - Mu[, j])ˆ2))

s = round(s, 2)

Scaled basis

Bsc = B %*% diag(aj)

Create data frames for ggplot

Data = data.frame(x, y)

Zf = data.frame(x = u, y = Z[, j], id = as.factor(1))

Bf = data.frame(x = rep(u, n), y = as.vector(Bsc),

id = as.factor(rep(1:n, each = nu)))

Bf$y[Bf$y < 0.0001] = NA

Bf = na.omit(Bf)

titl = bquote(lambda==.(lambdas[j])˜ "|"˜s==.(s)˜"|"˜r==.(r))

Fa = data.frame(x = knots, y = aj, id = as.factor(1))

Build the graphs

plt1 = ggplot(Data, aes(x = x, y = y), ylim = c(0, 1.5)) +

geom_point(color = ’grey40’) +

geom_line(data = Zf, aes(x, y), color = "blue", size = 1) +

geom_point(data = Fa, color = "red", size = 2, shape = 1) +

xlab("") + ylab("") +

ggtitle(titl) +

JOPS_theme() +

theme(plot.title = element_text(size = rel(0.9)))

Add to list of plots

plts[[j]] = plt1

}

Plot and save

grid.arrange(grobs = plts, nrow = 2, ncol = 2)

