
Bayesian P-splines, based on example Jullion and Lambert

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

1.8

1.9

2.0

2.1

2.2

−2 −1 0 1 2

Smoothing of simulated data with Bayesian P-splines (20 cubic segments, second order penalty). The
true curve is represented by the thick grey line. It consists of sums and differences of logistic functions.
The thinner blue line shows the fit and the red broken lines the two standard deviation lines above and
below it. The number of Markov steps was 1000. R code in f-jullion.R

Bayesian P-splines, based on example Jullion and Lambert

A graph in the book ’Practical Smoothing. The Joys of P-splines’

Paul Eilers and Brian Marx, 2019

library(ggplot2)

library(gridExtra)

library(JOPS)

efun = function(x, a, b) 1/(1 + exp(a * (x - b)))

Simulate data

m = 150

set.seed(23)

xlo = -2

xhi = 2

x = seq(xlo, xhi, length = m)

y0 = efun(x, -4, 0.3) + efun(x, 3, 0.2) + efun(x, -4, 0.7) + efun(x,

5, 0.8)

y = y0 + rnorm(m) * 0.05

Bspline parameters

nseg = 20

B = bbase(x, xlo, xhi, nseg, 3)

n = ncol(B)

Roughness penalty

E = diag(n)

d = 2

D = diff(E, diff = d)

P = t(D) %*% D

Initialize

ndraw = 1000

v0 = v1 = rep(0, ndraw)

sig2 = 0.1

tau2 = 1

BB = t(B) %*% B

By = t(B) %*% y

yy = t(y) %*% y

A = matrix(0, n, ndraw)

Run Markov chain

for (it in 1:ndraw) {

Update coefficients

U = BB/sig2 + P/tau2

Ch = chol(U)

a0 = solve(Ch, solve(t(Ch), By))/sig2

a = solve(Ch, rnorm(n)) + a0

A[, it] = a

Update and save error variance

r2 = yy - 2 * t(a) %*% By + t(a) %*% BB %*% a

sig2 = c(r2/rchisq(1, m))

v0[it] = sig2

Update and save roughness variance

r = D %*% a

tau2 = c(sum(rˆ2)/rchisq(1, n - d))

v1[it] = tau2

}

Compute meand curve on grid

am = apply(A[, -(1:100)], 1, mean)

xg = seq(-2, 2, length = 200)

Bg = bbase(xg, xlo, xhi, nseg, 3)

mu = Bg %*% am

Local standard deviations

Mu = Bg %*% A

s = apply(Mu, 1, sd)

Plot data and curve

Data = data.frame(x = x, y = y, y0 = y0)

Dfit = data.frame(x = xg, mu = mu, lo = mu - 2 * s, hi = mu + 2 * s)

plt1 = ggplot(Data, aes(x = x, y = y)) +

geom_point(aes(x = x, y = y), size = 1.5, color = grey(0.20)) +

geom_line(data = Data, aes(x = x, y = y0), size = 2, color = ’grey’) +

geom_line(data = Dfit, aes(x = x, y = mu), size = 1, color = ’blue’) +

geom_line(data = Dfit, aes(x = x, y = lo), size = 1, color = ’red’, linetype = 2) +

geom_line(data = Dfit, aes(x = x, y = hi), size = 1, color = ’red’, linetype = 2) +

geom_line(data = Dfit, aes(x = x, y = lo), size = 0.5, color = ’red’, linetype = 1) +

geom_line(data = Dfit, aes(x = x, y = hi), size = 0.5, color = ’red’, linetype = 1) +

geom_point(aes(x = x, y = y), size = 1.5, color = grey(0.20)) +

xlab(’’) + ylab(’’) +

JOPS_theme()

Save graph

plot(plt1)

