
Smoothing with and without a circular B-spline basis

●
●●●●

●
●

●●●●

●
●

●
●

●

●●

●

●●●

●

●

●
●

●
●●

●
●

●

●
●

●
●

●

●●
●

●●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●
●●

●

●●
●

●

●

●
●

●
●

●●
●

●
●

●

●●

●

●

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Linear smoothing

●
●●●●

●
●

●●●●

●
●

●
●

●

●●

●

●●●

●

●

●
●

●
●●

●
●

●

●
●

●
●

●

●●
●

●●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●
●●

●

●●
●

●

●

●
●

●
●

●●
●

●
●

●

●●

●

●

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

Circular smoothing

Smoothing with a standard (cubic) B-spline basis (top) and with a circular basis (bottom). R code in
f-periodic.R

Smoothing with and without a circular B-spline basis

A graph in the book ’Practical Smoothing. The Joys of P-splines’

Paul Eilers and Brian Marx, 2019

library(ggplot2)

library(gridExtra)

library(JOPS)

Simulate data

m = 100

x = ((1:m) - 0.5)/m

y0 = cos(2 * pi * x)

set.seed(345)

y = y0 + rnorm(m) * 0.2

Construct B-splines

n = 10

d = 3

B = bbase(x, 0, 1, n, 3)

nb = ncol(B)

C = cbase(x, 0, 1, n, 3)

nc = ncol(C)

Construct penalty

D = diff(diag(nb), diff = 2)

Dc = cdiff(nc)

P-spline solution (with and without circular penalty)

lambda = 30

ac = solve(t(C) %*% C + lambda * t(Dc) %*% Dc, t(C) %*% y)

zc = C %*% ac

a = solve(t(B) %*% B + lambda * t(D) %*% D, t(B) %*% y)

z = B %*% a

Generate plots

Data = data.frame(x, y, z, zc)

plt1 = ggplot(Data, aes(x = x, y = y)) +

geom_point(color = ’darkgrey’) +

geom_line(aes(x = x, y = z), color = ’blue’, size = 1) +

xlab("") + ylab("") +

ggtitle("Linear smoothing") +

JOPS_theme()

plt2 = ggplot(Data, aes(x = x, y = y)) +

geom_point(color = ’darkgrey’) +

geom_line(aes(x = x, y = zc), color = ’blue’, size = 1) +

xlab("") + ylab("") +

ggtitle("Circular smoothing") +

JOPS_theme()

Save graph

grid.arrange(plt1, plt2, nrow = 2, ncol = 1)

