Tensor product surfaces, with various row and column tuning

Examples of tensor product surfaces, with various degrees of interaction. See the text for explanation. R code in f-tensor4up. R

```
# Tensor product surfaces, with various row and column tuning
# A graph in the book 'Practical Smoothing. The Joys of P-splines'
# Paul Eilers and Brian Marx, 2019
library(ggplot2)
library(JOPS)
# Add noise
nx = ny = 30
x = 1:nx
y = 1:ny
Z = matrix(runif(nx * ny), nx, ny)
sm2d = function(Z, W, x, y, lamdas) {
    # Prepare bases
    Bx = bbase(x, nseg = 10)
    By = bbase(y, nseg = 10)
    nbx = ncol(Bx)
    nby = ncol(By)
    W = 0 * Z + 1
    # Prpare the penalty matrices
    Dx = diff(diag(nbx), diff = 2)
    Dy = diff(diag(nby), diff = 2)
    lambdax = lambday = 1
    Px = lamdas[1] * t(Dx) %*% Dx
    Py = lamdas[2] * t(Dy) %*% Dy
    P = kronecker(Py, diag(nbx)) + kronecker(diag(nby), Px)
    # Do the smoothing, using the array algorithm
    W = 0 * Z + 1
    Tx = rowtens(Bx)
    Ty = rowtens(By)
    Q = t(Tx) %*% W %*% Ty
    dim(Q) = c(nbx, nbx, nby, nby)
    Q = aperm(Q, c(1, 3, 2, 4))
```

```
    dim(Q) = c(nbx * nby, nbx * nby)
    r = t(Bx) %*% (Z * W) %*% By
    dim(r) = c(nbx * nby, 1)
    A = solve(Q + P, r)
    dim(A) = c(nbx, nby)
    Zhat = Bx %*% A %*% t(By)
}
```

\# Setting various tuning to show flexiblity
par (mfrow $=c(2,2), \operatorname{mar}=c(\theta, 0,0,0))$
Zhat $1=\operatorname{sm2d}(Z, W, x, y, c(\theta .0 \theta 1,0.001))$
Zhat2 $=\operatorname{sm2d}(Z, W, x, y, c(1000,1 e-04))$
Zhat3 $=\operatorname{sm2d}(Z, W, x, y, c(1 e-04,100 \theta))$
Zhat4 $=\operatorname{sm2d}(Z, W, x, y, c(1000,1000))$
thecol = 'blue'
thelwd $=0.7$
$x \lim =y l i m=c(0.15,0.85) * n x$
$z \lim =c(\theta, 1) * \max (Z)$
persp(x, y, Zhat1, theta $=30, \mathrm{phi}=50, \mathrm{r}=10$, $\mathrm{d}=2$, axes $=\mathrm{F}$, box $=\mathrm{F}$,
zlim = zlim, xlim = xlim, ylim = ylim, border = thecol, lwd = thelwd)
persp(x, y, Zhat2, theta $=30, \operatorname{phi}=50, r=10, d=2$, axes $=F, b o x=F$
zlim = zlim, xlim = xlim, ylim = ylim, border = thecol, lwd = thelwd)
persp(x, y, Zhat3, theta $=30$, phi $=50, r=10, d=2$, axes $=F, b o x=F$,
zlim = zlim, xlim = xlim, ylim = ylim, border = thecol, lwd = thelwd)
persp(x, y, Zhat4, theta $=30$, phi $=50, r=10, \mathrm{~d}=2$, axes $=F$, box $=F$,
zlim = zlim, xlim = xlim, ylim = ylim, border = thecol, lwd = thelwd)

